Slope Fields with Mathematica - Exercise 3.1 (2024)

A Post Exercise Discussion of

dy/dx=xy, on the region -3 ≤x≤ 3, and -3 ≤y≤ 3

Don't cheat! If you didn't do the exercise inMathematicabefore you came here to see the discussion,go backand do it now!

Assuming that you did the exercise correctly, you should have produced a picture that looked somewhat like the following:

Slope Fields with Mathematica - Exercise 3.1 (1)
Slope Field fordy/dx=xy

At first glance it may seem that the field marks once again have matching slopes along vertical lines, but look more closely. This impression is simply a result of the graph'sy-axis symmetry. In actual fact it looks like the slopes of the field marks get steeper the further away you go from thex-axis. For the first time in this laboratory we are witnessing a slope field whose isoclines are neither vertical nor horizontal. In fact the isoclines of this fieldare not even straight lines!

So what are they? Well, let's remind ourselves of the definition of the wordisocline—a curve in the slope field along which all of the field marks have the same slope. i.e. to find an isocline, (especially if you can't find it easily just by looking at the graph as we've done in the past), look for where theslope is constant.

So let's reason as follows:

The differential equation tells us:

dy/dx=xy,

which we can think of as:

slope=xy.

But we said a little earlier that isoclines are where slope isconstant. So let's rewrite the equation again as:

constant=xy.

Or, more briefly as:

xy=C,

whereCrepresents any constant.

So the equationxy=Cdescribes the shape of the isoclines of this slope field. Do you recognize it? It may take a little digging in the deep recesses of your memory to come up with the fact that this curve is ahyperbolafor any non-zero value ofC. (Actually, it's a hyperbola rotated 45 degrees from it's standard position.)

Now that you know that the isoclines are hyperbolas, can you see them? Well, don't feel bad, neither can I. To be able to pick out the isoclines clearly we would need to redo the problem with a much denser slope field, and then superimpose some sample curves from the familyxy=Con the field itself. Tracing our way along any of these superimposed curves we should find that all of the field marks intersecting the isocline have exactly the same slopes. It is actually possible to achieve this effect withMathematica, and the results end up looking something like this:

Slope Fields with Mathematica - Exercise 3.1 (2)
Slope Field fordy/dx=xy
with superimposed isoclinesxy=C

It's still a little tough to see clearly, but try to verify from this image that as you trace along any particular one of thered hyperbolic isoclines, the slopes of the vectors which intersect it are all the same.

You will not be asked to graph isoclines like this on lab exams, but if you'd like to see theMathematicanotebook that was used to make the above plot, click on the icon to the left. If you do, please try to read it carefully, and try to understand what each command is being used for. Feel free to experiment with it a little. Don't forget to return here when you are done.

Make sure you understand the theoretical procedure we used to find the isoclines above—the same method works on all first order differential equations that can be written in the formdy/dx=g(x, y).

Anyway, enough about isoclines, what about finding an analytic solution? This problem can be solved by a method similar to the one we've used so far, i.e. direct integration. The method is referred to asseparation of variables. The general idea being that we rewrite the differential equation in the form:

f(x)dx=h(y)dy

Now this change is not always possible for every equation. The one's which can be rearranged this way are calledseparable.

Here goes! Starting with:

dy/dx=xy,

we multiply both sides bydx, and divide both sides byyto get:

(1/y)dy=xdx.

Now from here integration is simple. We get:

ln|y| =x2/2 +C.

A little algebraic rearranging to isolateygives us:

y=A ex2/2.

Whether or not the slope field we see looks anything like the family of curves we have just written is a little elusive since most of us never memorized the graph ofex2/2. However, we could useMathematicato superimpose its graph on the slope field and compare. If we do this, the result would look something like the following:

Slope Fields with Mathematica - Exercise 3.1 (4)
Slope Field fordy/dx=xy
with superimposed solution curvesy=A ex2/2

As you can see, thesolution curvesthat we just calculated theoretically fit the slope field that we made earlier quite well.

You will not be asked to graph solutions curves over slope fields like this on lab exams, but if you'd like to see theMathematicanotebook that was used to make the above plot, click on the icon to the left. If you do, please try to read it carefully, and try to understand what each command is being used for. Feel free to experiment with it a little. Don't forget to return here when you are done.

Well, we're done with the discussion of this problem, so let's go back to theexercises.

Slope Fields with Mathematica - Exercise 3.1 (2024)
Top Articles
cincinnati for sale by owner "signs" - craigslist
ATMs in Germany: locations, fees, and tips
What Did Bimbo Airhead Reply When Asked
Cpmc Mission Bernal Campus & Orthopedic Institute Photos
Www.fresno.courts.ca.gov
فیلم رهگیر دوبله فارسی بدون سانسور نماشا
Phcs Medishare Provider Portal
Wizard Build Season 28
Craigslist Benton Harbor Michigan
Kristine Leahy Spouse
Volstate Portal
Tanger Outlets Sevierville Directory Map
Produzione mondiale di vino
Best Cav Commanders Rok
Rainfall Map Oklahoma
Operation Cleanup Schedule Fresno Ca
Dutch Bros San Angelo Tx
Craigslist Panama City Fl
Ostateillustrated Com Message Boards
Water Days For Modesto Ca
Bank Of America Financial Center Irvington Photos
Lehmann's Power Equipment
Ally Joann
Account Suspended
Nevermore: What Doesn't Kill
bode - Bode frequency response of dynamic system
Like Some Annoyed Drivers Wsj Crossword
Devotion Showtimes Near Regency Buenaventura 6
Tokyo Spa Memphis Reviews
Urbfsdreamgirl
Log in to your MyChart account
100 Million Naira In Dollars
South Florida residents must earn more than $100,000 to avoid being 'rent burdened'
Vlocity Clm
Flixtor Nu Not Working
Haley Gifts :: Stardew Valley
Gas Prices In Henderson Kentucky
Junior / medior handhaver openbare ruimte (BOA) - Gemeente Leiden
The 38 Best Restaurants in Montreal
20+ Best Things To Do In Oceanside California
Sams La Habra Gas Price
Kazwire
Complete List of Orange County Cities + Map (2024) — Orange County Insiders | Tips for locals & visitors
The Realreal Temporary Closure
Jammiah Broomfield Ig
Tacos Diego Hugoton Ks
Phmc.myloancare.com
Phunextra
Aaca Not Mine
Coleman Funeral Home Olive Branch Ms Obituaries
Gainswave Review Forum
Latest Posts
Article information

Author: Greg Kuvalis

Last Updated:

Views: 5734

Rating: 4.4 / 5 (55 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.